A Survey of Stream Data Mining
نویسندگان
چکیده
At present a growing number of applications that generate massive streams of data need intelligent data processing and online analysis. Real-time surveillance systems, telecommunication systems, sensor networks and other dynamic environments are such examples. The imminent need for turning such data into useful information and knowledge augments the development of systems, algorithms and frameworks that address streaming challenges. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining data streams is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information. In this paper, we present the theoretical foundations of data stream analysis and identify potential directions of future research. Mining data stream techniques are being critically reviewed.
منابع مشابه
Network Big Data: A Literature Survey on Stream Data Mining
With the rapid development of Internet, the internet of things and other information technology, big data usually exists in cyberspace as the form of the data stream. It brings great benefits for information society. Meanwhile, it also brings crucial challenges on big data mining in the data stream. Recently, academic and industrial communities have a widespread concern on massive data mining p...
متن کاملApplication of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...
متن کاملUsing stream sediment data to determine geochemical anomalies by statistical analysis and fractal modeling in Tafrash Region, Central Iran
Iranian Cenozoic magmatic belt, known as Urumieh-Dokhtar, is recognized as an important polymetallic mineralization which hosts porphyry, epithermal, and polymetallic skarn deposits. In this regard, multivariate analyses are generally used to extract significant anomalous geochemical signature of the mineral deposits. In this study, stepwise factor analysis, cluster analysis, and concentration–...
متن کاملStream Data Mining: A Survey
A data stream is a massive, continuous and rapid sequence of data elements. Mining data streams raises new problems for the data mining community about how to mine continuous high-speed data items that you can only have one look at. Due to this reason, traditional data mining approach is replaced by systems of some special characteristics, such as continuous arrival in multiple, rapid, time-var...
متن کاملSeparation of Geochemical Anomalies Using Factor Analysis and Concentration-Number (C-N) Fractal Modeling Based on Stream Sediments Data in Esfordi 1:100000 Sheet, Central Iran
The aim of this study is separation of Fe2O3, TiO2 and V2O5 anomalies in Esfordi 1:100,000 sheet which is located in Bafq district, Central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into 5 groups (factors) by factor analysis. The Concentration–Number (C-N) fractal model was used for delineation of the Fe2O3, TiO2 and V2O5 thresholds. According to...
متن کامل